Senin, 01 Desember 2014

KUMPULAN RUMUS - RUMUS FISIKA

Berikut kumpulan RUMUS FISIKA lengkap. yang mungkin selain sebagai media pengingat juga dapat di pahami lebih dalam lagi dari sebelumnya yang kemungkinan hanya dibaca sekilas. yuk baca :D

- GERAK

Gerak lurus beraturan

Sistem koordinat kutub dua dimensi
Gerak Lurus Beraturan (GLB) adalah suatu gerak lurus yang mempunyai kecepatan konstan. Maka nilai percepatannya adalah a = 0. Gerakan GLB berbentuk linear dan nilai kecepatannya adalah hasil bagi jarak dengan waktu yang ditempuh.
Rumus:
\!v=\frac{s}{t}
Dengan ketentuan:
  • \!s = Jarak yang ditempuh (km, m)
  • \!v = Kecepatan (km/jam, m/s)
  • \!t = Waktu tempuh (jam, sekon)
Catatan:
  1. Untuk mencari jarak yang ditempuh, rumusnya adalah \!s=\!v\times\!t.
  2. Untuk mencari waktu tempuh, rumusnya adalah \!t=\frac{s}{v}.
  3. Untuk mencari kecepatan, rumusnya adalah \!v=\frac{s}{t}.

Kecepatan rata-rata

Rumus:
\!v=\frac{s_{total}}{t_{total}} = \frac {V_{1} \times t_{1} + V_{2} \times t_{2} + ... + V_{n} \times t_{n}} {t_{1} + t_{2} + ... + t_{n}}

Gerak lurus berubah beraturan

Gerak lurus berubah beraturan adalah gerak yang lintasannya berupa garis lurus dengan kecepatannya yang berubah beraturan.
Percepatannya bernilai konstan/tetap.
Rumus GLBB ada 3, yaitu:
  • \!v_{t}=\!v_{0}+\!a\times\!t

  • \!s=\!v_{0}\times\!t+\frac{1}{2}\times\!a\times\!t^2

  • \!v_{t}^2=\!v_{0}^2+\!2\times\!a\times\!s
Dengan ketentuan:
  • \!v_{0} = Kecepatan awal (m/s)
  • \!v_{t} = Kecepatan akhir (m/s)
  • \!a = Percepatan (m/s2)
  • \!s = Jarak yang ditempuh (m)

Gerak vertikal ke atas

Benda dilemparkan secara vertikal, tegak lurus terhadap bidang horizontal ke atas dengan kecepatan awal tertentu. Arah gerak benda dan arah percepatan gravitasi berlawanan, gerak lurus berubah beraturan diperlambat.
Peluru akan mencapai titik tertinggi apabila Vt sama dengan nol.




t_{\text{maks}}= \frac {Vo} {g}

h= \frac {Vo^2} {2g}
t= {2} \times {t_{\text{maks}}}
{V_{\text{t}}^2}= V_{\text{0}}^2 - 2 \times{g} \times{h}
Keterangan:
  • Kecepatan awal= Vo
  • Kecepatan benda di suatu ketinggian tertentu= Vt
  • Percepatan /Gravitasi bumi: g
  • Tinggi maksimum: h
  • Waktu benda mencapai titik tertinggi: t maks
  • Waktu ketika benda kembali ke tanah: t

Gerak jatuh bebas

Benda dikatakan jatuh bebas apabila benda:
  • Memiliki ketinggian tertentu (h) dari atas tanah.
  • Benda tersebut dijatuhkan tegak lurus bidang horizontal tanpa kecepatan awal.
Selama bergerak ke bawah, benda dipengaruhi oleh percepatan gravitasi bumi (g) dan arah kecepatan/gerak benda searah, merupakan gerak lurus berubah beraturan dipercepat.
v= \sqrt{2gh}
t= \sqrt{2h/g}
Keterangan:
  • v = kecepatan di permukaan tanah
  • g = gravitasi bumi
  • h = tinggi dari permukaan tanah
  • t = lama benda sampai di tanah

Gerak vertikal ke bawah

Benda dilemparkan tegak lurus bidang horizontal arahnya ke bawah.
Arah percepatan gravitasi dan arah gerak benda searah, merupakan gerak lurus berubah beraturan dipercepat.
Vt= {Vo} + g \times t
Vt^2= {Vo^2} + 2 \times g \times h
Keterangan:
  • Vo = kecepatan awal
  • Vt = kecepatan pada ketinggian tertentu dari tanah
  • g = gravitasi bumi
  • h = jarak yang telah ditempuh secara vertikal
  • t = waktu

Gerak melingkar

Gerak dengan lintasan berupa lingkaran.
Circular motion diagram.png
Dari diagram di atas, diketahui benda bergerak sejauh ω° selama  t sekon, maka benda dikatakan melakukan perpindahan sudut.
Benda melalukan 1 putaran penuh. Besar perpindahan linear adalah  2 \pi r atau keliling lingkaran. Besar perpindahan sudut dalam 1 putaran penuh adalah  2 \pi radian atau 360°.
 2 \pi rad = 360^\circ
 1 rad = \frac {360^\circ} {2 \pi} = \frac {180^\circ} {\pi} = 57,3^\circ

Perpindahan sudut, kecepatan sudut, dan percepatan sudut

Perpindahan sudut adalah posisi sudut benda yang bergerak secara melingkar dalam selang waktu tertentu.
 \theta = \omega \times t
Keterangan:
  •  \theta = perpindahan sudut (rad)
  •  \omega = kecepatan sudut (rad/s)
  • t = waktu (sekon)
Kecepatan sudut rata-rata ( \overline{\omega} ): perpindahan sudut per selang waktu.
 \overline{\omega} = \frac {\vartriangle\theta} {\vartriangle t} = \frac {\theta_{2} - \theta_{1}} {t_{2} - t_{1}}
Percepatan sudut rata-rata ( \alpha ): perubahan kecepatan sudut per selang waktu.
 \alpha = \frac {\vartriangle\omega} {\vartriangle t} = \frac {\omega_{2} - \omega_{1}} {t_{2} - t_{1}}
 \alpha  : Percepatan sudut (rad/s2)

Percepatan sentripetal

Arah percepatan sentripetal selalu menuju ke pusat lingkaran.
Percepatan sentripetal tidak menambah kecepatan, melainkan hanya untuk mempertahankan benda agar tetap bergerak melingkar.
 A_{s} = \frac {v^2} {r} = \omega^2 r
Keterangan:
  • r : jari-jari benda/lingkaran
  • As: percepatan sentripetal (rad/s2)

- MASSA JENIS

 ρ = m / v

Keterangan :
  • ρ = Massa jenis (kg/m3) atau (g/cm3)
  • m = massa (kg atau gram)
  • v = volume (m3 atau cm3

 

-PEMUAIAN

Muai panjang

Rumus:
\!L_{t}=\!L_{0}(\!1+\alpha\times\Delta t)
  • \!L_{t} = panjang akhir (m, cm)
  • \!L_{0} = panjang awal (m, cm)
  • \alpha = koefisien muai panjang (/°C)
  • \Delta t = perbedaan suhu (°C)

Muai volume

Rumus:
\!V_{t}=\!V_{0}(\!1+\gamma\times\Delta\!t)
Keterangan:
  • \!V_{t} = volume akhir (m3, cm3)
  • \!V_{0} = volume awal (m3, cm3)
  • \gamma = \!3\alpha = koefisien muai volume (/°C)
  • \Delta t = selisih suhu (°C)

Muai luas

Rumus:
\!A_{t}=\!A_{0}(\!1+\beta\times\Delta t)
Keterangan:
  • \!A_{t} = luas akhir (m2, cm2)
  • \!A_{0} = luas awal (m2, cm2)
  • \beta = \!2\alpha = koefisien muai luas (/°C)
  • \Delta t = selisih suhu (°C)
 

- ENERGI


Energi mekanik

Energi mekanik adalah jumlah dari energi potensial dan energi kinetik.
 E_m = E_p + E_k

Energi potensial

Energi potensial adalah energi yang dimiliki suatu benda karena memiliki ketinggian tertentu dari tanah. Energi potensial ada karena adanya gravitasi bumi. Dapat dirumuskan sebagai:
 E_p = m \times g \times h
Keterangan:
  • Ep: Energi potensial (J)
  • m: massa benda (kg)
  • g: percepatan gravitasi (m/s2)
  • h: tinggi benda dari permukaan tanah (meter)

Energi kinetik

Energi kinetik adalah energi yang dimiliki suatu benda karena geraknya. Energi kinetik dipengaruhi oleh massa benda dan kecepatannya.
E_k = \frac{1}{2} \times m \times v^2
Keterangan:
  • Ek: Energi kinetik (J)
  • m : massa benda (kg)
  • v : kecepatan benda (m/s)

Energi kinetik pegas

E_k = \frac{1}{2} \times k \times x^2
Keterangan:
  • Ek: Energi kinetik pegas (J)
  • k : konstanta pegas (N/m²)
  • x : perpanjangan pegas (m)

Energi kinetik relativistik

E_k = (\gamma-1) E_0 = (\gamma-1) m_0c^2

 

- GAYA dan TEKANAN

Gaya

Gaya dalam pengertian ilmu fisika adalah seseatu yang menyebabkan perubahan keadaan benda.

Hukum Newton

Hukum I Newton

Setiap benda akan tetap diam atau bergerak lurus beraturan apabila pada benda itu tidak bekerja gaya.
 \Sigma F = 0

Hukum II Newton

Bila sebuah benda mengalami gaya sebesar F maka benda tersebut akan mengalami percepatan.
 \Sigma F = m \times a
Keterangan:
  • F : gaya (N atau dn)
  • m : massa (kg atau g)
  • a : percepatan (m/s2 atau cm/s2)

Hukum III Newton

Untuk setiap gaya aksi, akan selalu terdapat gaya reaksi yang sama besar dan berlawanan arah.
 F_{AB} = - F_{BA}

Gaya gesek

 F_{g} = \mu \times N
Keterangan:
  • Fg : Gaya gesek (N)
  •  \mu  : koefisien gesekan
  • N : gaya normal (N)

Gaya berat

 w = m \times g
Keterangan:
  • W : Gaya berat (N)
  • m : massa benda (kg)
  • g : gravitasi bumi (m/s2)

Berat jenis

 s = \rho \times g atau  s = \frac {w} {V}
Keterangan:
  • s: berat bersih (N/m3)
  • w: berat janda (N)
  • V: Volume oli (m3)
  •  \rho : massak kompor(kg/m3)

Tekanan

 p = \frac {F} {A}
Keterangan:
  • p: Tekanan (N/m² atau dn/cm²)
  • F: Gaya (N atau dn)
  • A: Luas alas/penampang (m² atau cm²)
Satuan:
  • 1 Pa = 1 N/m² = 10-5 bar = 0,99 x 10-5 atm = 0,752 x 10-2 mmHg atau torr = 0,145 x 10-3 lb/in² (psi)
  • 1 torr= 1 mmHg

Tekanan hidrostatis

p_{\text{h}} = \rho\,\! \times g \times h
p_{\text{h}} = h \times s
Keterangan:
  • ph: Tekanan hidrostatis (N/m² atau dn/cm²)
  • h: jarak ke permukaan zat cair (m atau cm)
  • s: berat jenis zat cair (N/m³ atau dn/cm³)
  • ρ: massa jenis zat cair (kg/m³ atau g/cm³)
  • g: gravitasi (m/s² atau cm/s²)

Hukum Pascal

Tekanan yang diberikan pada zat cair dalam ruang tertutup akan diteruskan sama besar ke segala arah.
 \frac {F_{\text{2}}} {A_{\text{2}}} = \frac {F_{\text{1}}} {A_{\text{1}}}
Keterangan:
  • F1: Gaya tekan pada pengisap 1
  • F2: Gaya tekan pada pengisap 2
  • A1: Luas penampang pada pengisap 1
  • A2: Luas penampang pada pengisap 2

Hukum Boyle


 {V_{\text{1}}} \times {P_{\text{1}}} = {P_{\text{2}}} \times {V_{\text{2}}}


- USAHA


Subbab ini akan menjelaskan tentang usaha.


 W = F \times S
 W = \int F dx = \int m v {\operatorname{d}v\over\operatorname{d}x} = \int m v dv
Keterangan:
  • W = usaha (newton meter atau Joule)
  • F = gaya (newton)
  • S = jarak (meter)
Usaha yang dilakukan oleh pegas:
 W = \frac {1}{2} \times k \times x^2
Keterangan:
  • W = usaha (newton meter atau Joule)
  • k = konstanta pegas (Newton/m2)
  • x = pertambahan panjang pegas (meter)

- GETARAN, GELOMBANG dan BUNYI


Periode dan Frekuensi Getaran

Periode Getaran

T=\frac{t}{n}

Dengan ketentuan:
  • \!T = Periode (sekon)
  • \!t = Waktu (sekon)
  • \!n = Jumlah getaran

Frekuensi Getaran

\!f=\frac{n}{t}
Dengan ketentuan:
  • \!f = Frekuensi (Hz)
  • \!n = Jumlah getaran
  • \!t = Waktu (sekon)

Periode Getaran

\!T=\frac{1}{f}

Dengan ketentuan:
  • \!T = periode getaran (sekon)
  • \!f = frekuensi(Hz)

Hubungan antara Periode dan Frekuensi Getaran

Besar periode berbanding terbalik dengan frekuensi.
  • \!T=\frac{1}{f}
  • \!f=\frac{1}{T}
Dengan ketentuan:
  • \!T = periode (sekon)
  • \!f = frekuensi (Hz)

Gelombang

Gelombang berjalan

Persamaan gelombang:
y = A \sin 2\pi (ft \pm \frac {x} {\lambda})
Keterangan:
  • a: Amplitudo (m)
  • f: Frekuensi (Hz)
  •  \lambda : panjang gelombang (m)

- ALAT OPTIK


Lup (Kaca Pembesar)

Pembesaran bayangan saat mata tidak berakomodasi

\!M=\frac{Sn}{f}
Dengan ketentuan:
  • \!M = Pembesaran
  • \!Sn = Titik dekat (cm)
  • \!f = Fokus lup (cm)

Mikroskop

Proses pembentukan bayangan pada mikroskop
Pembesaran mikroskop adalah hasil kali pembesaran lensa objektif dan pembesaran lensa okuler, sehingga dirumuskan:
M_{mik}=M_{ob}\times M_{ok}

Karena lensa okuler mikroskop berfungsi seperti lup, pembesaran mikroskop dirumuskan sebagai berikut:

Pembesaran Mikroskop pada saat mata berakomodasi maksimum

M_{mik}=M_{ob}\times M_{ok}=(\frac{S'_{ob}}{S_{ob}})\times(\frac{Sn}{f_{ok}}+1)
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=S'_{ob}+S_{ok}=S'_{ob}+\frac{Sn\times f_{ok}}{Sn+f_{ok}}
Dengan ketentuan:
  • \!M_{mik} = Pembesaran mikroskop
  • \!M_{ob} = Pembesaran oleh lensa objektif
  • \!M_{ok} = Pembesaran oleh lensa okuler (seperti perbesaran pada lup)
  • \!Sn = Titik dekat mata
  • \!f_{ok} = Jarak fokus lensa okuler
  • \!S'_{ob} = jarak bayangan oleh lensa objektif
  • \!S_{ob} = jarak benda di depan lensa objektif
  • \!d = jarak lensa objektif dan lensa okuler

Pembesaran Mikroskop pada saat mata tidak berakomodasi

M_{mik}=M_{ob}\times \frac{Sn}{f_{ok}}=\frac{S'_{ob}}{S_{ob}}\times \frac{Sn}{f_{ok}}
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=S'_{ob}+f_{ok}\,\!
Dengan ketentuan:
  • \!M_{mik} = Pembesaran mikroskop
  • \!M_{ob} = Pembesaran oleh lensa objektif
  • \!Sn = Titik dekat mata
  • \!f_{ok} = Jarak fokus lensa okuler
  • \!S'_{ob} = jarak bayangan oleh lensa objektif
  • \!S_{ob} = jarak benda di depan lensa objektif
  • \!d = jarak lensa objektif dan lensa okuler.

Teropong Bintang

Pembesaran Teropong Bintang pada saat mata tidak berakomodasi

M=\frac{f_{ob}}{f_{ok}}
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=f_{ob}+f_{ok}\,\!
Dengan ketentuan:
  • \!d = Jarak lensa objektif dan lensa okuler
  • \!M = Pembesaran teropong bintang
  • \!f_{ob} = Jarak fokus lensa objektif
  • \!f_{ok} = Jarak fokus lensa okuler

Pembesaran Teropong Bintang pada saat mata berakomodasi maksimum

M=\frac{f_{ob}}{S_{ok}}
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=f_{ob}+s_{ok}\,\!

Dengan ketentuan:
  • M=\frac{f_{ob}}{f_{ok}}
Dengan ketentuan:
  • \!M = Pembesaran teropong bumi
  • \!f_{ob} = Jarak fokus lensa objektif
  • \!f_{ok} = Jarak fokus lensa okuler

Jarak lensa objektif dan lensa okuler

d=f_{ob}+4f_p+f_{ok}\,\!
Dengan ketentuan:
  • \!d = Jarak lensa objektif dan lensa okuler
  • \!f_{ob} = Jarak fokus lensa objektif
  • \!f_p = Jarak fokus lensa pembalik
  • \!f_{ok} = Jarak fokus lensa okuler

- IMPULS dan MOMENTUM


Momentum

 p = m \times v
 \vartriangle p = m \vartriangle v  = mv_{1} - mv_{0}
Keterangan:
  • p = momentum (kg m/s)
  • m = massa benda (kg)
  • v = kecepatan benda (m/s)

Impuls

Impuls merupakan perubahan momentum.
 I = \vartriangle p = F \vartriangle t = \int F dt
Keterangan:
  • I = impuls
  •  \vartriangle p = perubahan momentum (kg m/s)
  •  \vartriangle t = perubahan selang waktu (s)
  • F = gaya (Newton)
 

- INDUKSI MAGNETIK

Toroida

Kuat medan magnet di sumbu toroida: 
B = \frac{\mu_0 i N}{2 \pi a}
dengan:
  • i: kuat arus yang mengalir (Ampere)
  • a: jari-jari efektif (meter)
  • N: jumlah lilitan
  • \mu_0: permitivitas vakum = 4\pi * 10^{-7} Wb/(A·m)

 

- USAHA dan ENERGI

Kerja oleh gaya konstan

 W= F \times s
Keterangan:
  • W: kerja yang dilakukan oleh gaya terhadap benda (J)
  • F: gaya yang dikerjakan pada benda (N)
  • s: jarak yang ditempuh benda selama bergerak (meter)
Jika gaya konstan yang bekerja tidak searah dengan arah gerak benda, maka besarnya kerja yang dilakukan pada benda adalah:
 W= (F \cos \alpha) \times s

Jika  \alpha=90 ^\circ, maka nilai  F \cos \alpha akan bernilai nol, sehingga tidak ada kerja yang dilakukan selama gerakan.

- RELATIVITAS


Subbagian ini akan menjelaskan tentang rumus-rumus yang digunakan pada teori relativitas khusus.

Kecepatan A menurut B: v_{AB} = \frac {v_{AO} + v_{OB}}{1+ \frac {v_{AO} \times v_{OB}}{c^2}}
Dengan titik O adalah sebuah acuan yang berada di antara A dan B.
Keterangan:
  • VAB: Kecepatan benda A relatif terhadap kecepatan benda B.
  • VAO: Kecepatan benda A relatif terhadap acuan O.
  • VOB: Kecepatan benda B relatif terhadap acuan O.
  • c: kecepatan cahaya (3 x 108 m/s2)
Ada besaran \gamma yang gunanya untuk menghitung dilatasi waktu, panjang, dan massa.
\gamma = \frac {1} {\sqrt {1- \frac {v^2}{c^2}}}
Dilatasi panjang:
 L = \frac {L_0} {\gamma}
Keterangan:
  • L0: Panjang awal benda.
Dilatasi waktu:
 t = t_0 \times {\gamma}
Keterangan:
  • t0: waktu dalam acuan pengamat yang diam.
  • t: waktu dalam acuan pengamat yang bergerak.
Dilatasi massa:
 m = m_0 \times \gamma
Energi kinetik relativistik:


 E_k = (\gamma - 1) \times E_0 = (\gamma - 1) \times m_0 c^2


- TEORI KINETIK GAS

Mol dan massa molekul

1 mol= 6,022 x 1023 molekul
6,022 x 1023 juga disebut dengan bilangan avogadro (NA).
Massa sebuah atom/molekul:  m_{0} = \frac {M} {N_{A}}
Hubungan antara massa dengan mol:  m= n \times M atau  n= \frac {m} {M}
Keterangan:
  • n: jumlah mol
  • M: Massa relatif atom/molekul
  • m: massa zat (kg)

Persamaan keadaan gas ideal

Hukum Boyle

Tekanan gas akan berbanding terbalik dengan volumenya pada ruangan tertutup.
 p_{1} \times V_{1} = p_{2} \times V_{2}

Hukum Charles Gay-Lussac

Volume benda akan berbanding lurus dengan suhu mutlaknya pada ruangan tertutup.
 \frac {V_{1}} {T_{1}} = \frac {V_{2}} {T_{2}}
Dari kedua hukum diatas, maka:
 \frac {p_{1}\times V_{1}} {T_{1}} = \frac {p_{2}\times V_{2} } {T_{2}} atau disebut dengan Hukum Boyle-Gay Lussac.

Persamaan gas ideal

 p \times V = n \times R \times T
Keterangan:
  • p: tekanan
  • v: volume ruang
  • n: jumlah mol gas
  • R: tetapan umum gas
  • T: suhu (Kelvin)
Perhatikan satuan:
  • R= 8314 J/kmol K apabila tekanan dalam Pa atau N/m2, volume dalam m3, dan jumlah mol dalam kmol
  • R= 0,082 L atm/mol K apabila tekanan dalam atm, volume dalam liter, dan jumlah mol dalam mol

Turunan dari persamaan gas ideal

Karena  n= \frac {m} {M} maka dapat dituliskan:

 p \times V = n \times R \times T \Leftrightarrow p \times V = \frac {m} {M} \times R \times T
 \rho = \frac {m}{V} = \frac {p\times M} {R \times T}

Karena  n = \frac {N} {N_{A}} , maka akan didapat persamaan:
 p \times V = \frac {N} {N_{A}} \times R \times T (dari rumus P V = n R T)
 p \times V = N \times \frac {R} {N_{A}} \times T
 \frac {R} {N_{A}} = k , maka:

 p \times V = N \times k \times T

k disebut dengan tetapan Boltzmann, yang nilainya adalah:

 k = \frac {R} {N_{A}} = \frac {8314 J/kmol K} {6,022 \times 10^{23} partikel} = 1,38 \times 10^{-23} J/K

- TERMODINAMIKA

Hukum Pertama Termodinamika

Perubahan energi dalam:  \Delta U= U_2 - U_1
Keterangan:
  •  \Delta U:Perubahan energi dalam (Joule)
  • U2:Energi dalam pada keadaan akhir (Joule)
  • U1:Energi dalam pada keadaan awal (Joule)
Usaha yang dilakukan oleh gas pada tekanan tetap:
 W = p \times \Delta V = p \times (V_2 - V_1)
Keterangan:
  • p: Besarnya tekanan (atm)
  •  \Delta V: Perubahan volume (liter)
Rumus umum usaha yang dilakukan gas:  W = \int_{v_1}^{v_2} p dV
Penghitungan energi dalam:
  • Gas monoatomik:  \Delta U = \frac {3}{2}n \times R \times \Delta T = \frac {3}{2}n \times R \times (T_2-T_1)
  • Gas diatomik:  \Delta U = \frac {5}{2}n \times R \times \Delta T = \frac {5}{2}n \times R \times (T_2-T_1)

Proses-proses termodinamika gas

Proses isobarik

Diagram proses isobarik. Daerah berwarna kuning sama dengan usaha yang dilakukan.
Proses isobarik adalah perubahan keadaan gas pada tekanan tetap.
Persamaan keadaan isobarik:  \frac {V_2}{T_2}= \frac {V_1}{T_1}
Usaha yang dilakukan pada keadaan isobarik:  W = p \times \Delta V

Proses isokhorik

Digram proses isokhorik. Grafiknya berupa garis lurus vertikal karena volumenya tidak berubah. Tidak ada usaha yang dilakukan pada proses isokhorik.
Proses isokhorik adalah perubahan keadaan gas pada volume tetap.
Persamaan keadaan isokhorik:  \frac {p_2}{T_2}= \frac {p_1}{T_1}

Proses isotermis/isotermik

Proses isotermik. Daerah berwarna biru menunjukkan besarnya usaha yang dilakukan gas.
Proses isotermik adalah perubahan keadaan gas pada suhu tetap.
Persamaan keadaan isotermik:  p_2 \times V_2= p_1 \times V_1
Usaha yang dilakukan pada keadaan isotermik:
  • Dari persamaan gas ideal
 p= \frac {n \times R \times T}{V}
  • Rumus umum usaha yang dilakukan gas:
 W = \int_{v_1}^{v_2} p dV
maka:  W = \int_{v_1}^{v_2} \frac {n \times R \times T}{V} dV
karena  n \times R \times T bernilai tetap, maka:
 W = {n \times R \times T} \int_{v_1}^{v_2} \frac {dV}{V}

Ingat integral ini!
 \int \frac {dx}{x} = \ln x
maka persamaan di atas menjadi
 W = n \times R \times T \times[\ln V_2 - \ln V_1]
maka menjadi:
 W = n \times R \times T \times \ln (\frac {V_2}{V_1})

Proses adiabatik

Proses adiabatik. Warna biru muda menunjukkan besarnya usaha yang dilakukan.
Proses adiabatik adalah perubahan keadaan gas dimana tidak ada kalor yang masuk maupun keluar dari sistem.
Persamaan keadaan adiabatik: p_1 \times V_1^{\gamma} =  p_2 \times V_2^{\gamma}

Tetapan Laplace:  \gamma = \frac {C_p}{C_V}


karena  p= \frac {n \times R \times T}{V} , maka persamaan diatas dapat juga ditulis:
 T_1 \times V_1^{\gamma-1} =  T_2 \times V_2^{\gamma-1}
Usaha yang dilakukan pada proses adiabatik:  W = \frac {1}{\gamma-1} (p_1 \times V_1 - p_2 \times V_2)

- DINAMIKA ROTASI

Torsi

Sebuah partikel yang terletak pada posisi r relatif terhadap sumbu rotasinya. Ketika ada gaya F yang bekerja pada partikel, hanya komponen tegak lurus F yang akan menghasilkan torsi. Torsi τ = r × F ini mempunyai besar τ = |r| |F| = |r| |F| sinθ yang arahnya keluar bidang kertas.
Torsi atau momen gaya adalah hasil kali antara gaya F dan lengan momennya. Torsi dilambangkan dengan lambang \tau.
\boldsymbol \tau = \mathbf{r}\times \mathbf{F}\,\!
\tau = rF\sin \theta\,\!
Satuan dari torsi adalah Nm (Newton meter).

Momen inersia

Momen inersia adalah hasil kali partikel massa dengan kuadrat jarak tegak lurus partikel dari titik poros.
I = m \times r^2
Satuan dari momen inersia adalah kg m² (Kilogram meter kuadrat).
Besaran momen inersia dari beberapa benda.
Benda Poros Gambar Momen inersia
Batang silinder Poros melalui pusat Moment of inertia rod center.png I = \frac{1}{12}\,\!mL^2
Batang silinder poros melalui ujung Moment of inertia rod end.png I = \frac{1}{3}\,\!mL^2
Silinder berongga Melalui sumbu Moment of inertia thin cylinder.png I = mR^2
Silinder pejal Melalui sumbu Moment of inertia thick cylinder.png I = \frac{1}{2}\,\!mR^2
Silinder pejal Melintang sumbu Moment of inertia thick cylinder h.png I = \frac{1}{4}\,\!mR^2 + \frac{1}{12}\,\!mL^2
Bola pejal Melalui diameter Moment of inertia solid sphere.svg I = \frac{2}{5}\,\!mR^2
Bola pejal Melalui salahsatu garis singgung Moment of inertia solid sphere.svg I = \frac{7}{5}\,\!mR^2
Bola berongga Melalui diameter Moment of inertia hollow sphere.svg I = \frac{2}{3}\,\!mR^2

Hubungan antara torsi dengan momen inersia

Hukum II Newton tentang rotasi
 \tau= I \times \alpha
Keterangan:
  • I : momen inersia (kg m²)
  • α : percepatan sudut (rad/s²)
  • \tau : torsi (Nm)

- KESETIMBANGAN BENDA TEGAR


Momen gaya : adalah kemampuan suatu gaya untuk dapat menyebabkan gerakan rotasi.
Besarnya MOMEN GAYA terhadap suatu titik sama dengan perkalian gaya dengan lengan momen.

τ = d . F

KETERANGAN :
τ = momen gaya
d = lengan momen
F = gaya

- MEKANIKA FLUIDA

Tekanan

 p = \frac {F} {A}
Keterangan:
  • p: Tekanan (N/m² atau dn/cm²)
  • F: Gaya (N atau dn)
  • A: Luas alas/penampang (m² atau cm²)
Satuan:
  • 1 Pa = 1 N/m² = 10-5 bar = 0,99 x 10-5 atm = 0,752 x 10-2 mmHg atau torr = 0,145 x 10-3 lb/in² (psi)
  • 1 torr= 1 mmHg

Tekanan hidrostatis

p_{\text{h}} = \rho\,\! \times g \times h
p_{\text{h}} = s \times h
Keterangan:
  • ph: Tekanan hidrostatis (N/m² atau dn/cm²)
  • h: jarak ke permukaan zat cair (m atau cm)
  • s: berat jenis zat cair (N/m³ atau dn/cm³)
  • ρ: massa jenis zat cair (kg/m³ atau g/cm³)
  • g: gravitasi (m/s² atau cm/s²)

Tekanan mutlak dan tekanan gauge

Tekanan gauge: selisih antara tekanan yang tidak diketahui dengan tekanan udara luar.
Tekanan mutlak = tekanan gauge + tekanan atmosfer
p = p_{\text{gauge}} + p_{\text{atm}}

Tekanan mutlak pada kedalaman zat cair

p_{\text{h}} = p_{\text{0}} + \rho\,\! \times g \times h
Keterangan:
  • p0: tekanan udara luar (1 atm = 76 cmHg = 1,01 x 105 Pa)

Hukum Pascal

Tekanan yang diberikan pada zat cair dalam ruang tertutup akan diteruskan sama besar ke segala arah.
 \frac {F_{\text{2}}} {A_{\text{2}}} = \frac {F_{\text{1}}} {A_{\text{1}}}
Keterangan:
  • F1: Gaya tekan pada pengisap 1
  • F2: Gaya tekan pada pengisap 2
  • A1: Luas penampang pada pengisap 1
  • A2: Luas penampang pada pengisap 2
Jika yang diketahui adalah besar diameternya, maka:  {F_{\text{2}}} = (\frac {D_{2}} {D_{1}})^2 \times F_{1}

Gaya apung (Hukum Archimedes)

Gaya apung adalah selisih antara berat benda di udara dengan berat benda dalam zat cair.

 F_{a} = M_{f} \times g
 F_{a} = \rho_{f} \times V_{bf} \times g

Keterangan:
  • Fa: gaya apung
  • Mf: massa zat cair yang dipindahkan oleh benda
  • g: gravitasi bumi
  • ρf: massa jenis zat cair
  • Vbf: volume benda yang tercelup dalam zat cair

Mengapung, tenggelam, dan melayang

Syarat benda mengapung: \rho_b campuran <\rho_f

Syarat benda melayang:  \rho_b campuran =\rho_f

Syarat benda tenggelam: \rho_b campuran >\rho_f



DAFTAR PUSTAKA

Wikipedia.2013.http://id.wikibooks.org/wiki/Rumus-Rumus_Fisika_Lengkap
         diakses pada 27 November 2014 pukul 21 : 35 WIB

5 komentar: